SD Chapter 7

1. Testing is often destructive. Explain what this statement means and why destructive testing is regarded as a desirable way to carry out the testing process.

Meaning
• An attempt to demonstrate errors
• An attempt to ‘break’ the system

Reason
• Detect errors in order to remove them

• Removal of errors is necessary to produce reliable system

2. Explain why testing should normally not be carried out by the programmers who wrote the software.

· Programmers may not be motivated to find mistakes.

· Programmers are “too close” to the product to see it objectively.

· Testing is a specialism.

· Testing is destructive.

3. What makes a test a good one?

• a test that is likely to find an error

4. Explain how the V model of software development can help in determining the most appropriate tests to carry out.

• The V model includes specification

• The V model includes design

• The testing relates to the specification / design

• Testing is directed at what is actually required of the system

5. Explain why there are often still errors in software, even after extensive and comprehensive testing.

• testing cannot cover everything too many pathways through a system

• too many possible processing combinations

• testing is expensive

6. Explain what is meant by unit testing and state who normally carries this testing out.

• testing a module / small piece of code

• carried out by programmers

7. State considerations that should be borne in mind when conducting usability testing.

• ease of learning

• ease of use

• flexibility / adaptability of system
• attitude / is the software pleasant to use?

8. Explain what is meant by an Integrated Development Environment.

• package of development utilities

• for the management of a complete programming project

9. State components of an Integrated Development Environment.

Examples:

• make / build facility

• object library

• ‘smart’ / syntax-aware editor
• form designer

• output window

• debugger

• properties window

10. A program is required to update a data file. Specify different types of test data that would be necessary when testing for possible errors in the program.
OR

In a shop, every time an item is sold or a new item delivered, a new record is entered into a transaction file. At the end of each day, this transaction file is sorted and used to update stock levels in the stock master file. A module of program code is written to perform the update. Describe tests that could be applied to the update module.

• at least one type of each transaction

• test for no transaction / no data

• attempt to insert before first record

• attempt to insert after last record

• ability to delete first record

• ability to delete last record

• ability to delete other record

• ability to perform multiple transactions on a record

• prevention of duplicate insertions

• at least one of every type of error

• all possible output

11. State TWO reasons why a software development company might decide that it is time to stop testing.

• the error detection rate has dropped to an acceptable level

• the product has to be launched because of marketing / financial reasons
12. Explain why it is important to document the testing of a software product.

• To ensure that all necessary tests have been carried out

• To allow a return to a previous state if problems occur

• To provide evidence that testing has been carried out

13. State aspects of testing a system that need to be documented.

• Test plan

• Test design

• Test case

• Test procedure
• Test log

• Test incident report

14. Explain why acceptance testing can usually only be black box testing.

• Acceptance testing carries out by user / client

• Software developers will not release source code

• Therefore user cannot test internals

• User can only test input / output / performance

15. Explain why it is not desirable for the programmers who developed a system to do their own testing.

• they may have a protective view of the system / be too close to it

• less motivated to discover faults

16. Explain why it is not possible to test all aspects of a computer system.

• testing is expensive

• complete testing requires testing all pathways with all possible values

• complete testing would take far too long

17. Using a graph or otherwise, describe the relationship between the number of errors found in a test program and the likelihood of there being more undiscovered errors.

The more errors already found, the more there are undiscovered or expressed as a graph: (give credit for the upward direction)

18. Explain what is meant by scaffolding code.

• extra code
• written to support particular test
• Used in bottom up testing

• written because not all the system is complete

19. Explain why scaffolding code can lead to misleading test results.

• the scaffolding code itself may contain errors

• which can be confused with errors in the code being tested

20. Explain what is meant by integration testing.

• designed to test that modules work together
· Tests the interface between modules

· Uncovers errors in parameter passing

· Two approaches – top down and bottom up

· Particularly useful when many programmers involved in a project

21. State circumstances that might lead to integration testing uncovering a large number of errors.
• errors in parameter passing

• large development team not communicating

• faulty specification

22. Explain what is meant by desk checking.

• checking code without a computer / no software required

• dry run

• uncovers logical errors

23. State types of error that might be uncovered during compilation.

• syntax error

• undeclared variables

• undefined objects

24. Explain the purpose of system testing.

Concerned with whether the system matches the specification

25. State aspects of a system that may be subjected to system testing.

· Functional testing / do all aspects do what is required?

· Volume testing / does the system cope with the required amount of data / transactions?

· Stress testing / does the system perform properly when user or hardware errors are made?

· Usability testing / is the product easy to work with?

· Security testing / is the data / software protected from corruption / unauthorised access

· Performance testing / does the system work fast enough?

· Documentation testing / is the documentation full / accurate / easy to follow?
26. Distinguish between alpha and beta testing.

Alpha: Carried out in-house.

Beta: Carried out by selected users / customers.

27. Explain how the V model of software development assists in the testing process.

· Testing shown at each stage

• Relates to the original specifications

28. Give reasons why testing is rarely completed

· Testing is expensive

• Complete testing involves testing every pathway

· Number of paths through software may be enormous

· Would take far too long

· Difficult to automate testing / need people to test software

Page 2 of 2

